
Jango Fett
Spawning developer environments



A not so long time ago
In a galaxy nearby …

A rebel start-up wanted to build something incredible

But they were limited by the number of dev 
environments

So they reached out to someone who could save them, 
their last hope … Me !



About Me: Yash Mehrotra

Backend, Infrastructure & Platform

Software Engineer @ Flanksource

Prev. Lummo, MindTickle, BlinkIt



Small detour: Kubernetes 101

- A container-orchestration system for automating application 

deployment, scaling, and management.

- Works on declarative configuration principle

- You apply YAML or JSON manifests and the system ensures the 

desired state is achieved



Kubernetes 101: Terminology

Namespace: A mechanism to provide virtual isolation for 

resources

Pods: Group of one or more containers

Deployment: Maintain a set of replica pods

ConfigMap: Store key-value pairs which can be used by pods



Kubernetes 101: Sample Deployment Manifest



Kubernetes 101: Sample Deployment Manifest



Kubernetes 201: CRDs

- Custom Resource Definition (CRD) allows you to define your 

own custom resource for the Kubernetes API

- Write your own controller to manage the system behaviour 

when interacting with your CRD

- Easy way to extend Kubernetes API



Kubernetes 201: CRDs



Kubernetes 201: CRDs



The problem

- Current setup:
- 1 production environment

- 1 staging environment

- 2 dev environments

- Wait to deploy your changes if someone else is using the dev 

environment

- Dev environments kept changing and lost parity with prod and 

staging



The problem

- No process for experimenting with things that may break dev 

environments

- Platform team started becoming the bottleneck for changes

- QA team had to wait for all the features to be merged in a 

single release to even begin testing



Episode I
The search begins



Goals

- Intuitive to use

- Kubernetes first approach

- Seamlessly integrate with our current system

- Supports parallel development on multiple services

- Isolation with other environments



No perfect fit

- Every tool solved a specific problem but not all

- Most of them had a learning curve

- Many were in active development and not stable



Will we embrace any ?

- Tons of glue code required to make any tool work

- They came with their own domain knowledge

- No way to fix missing features



What if … 
We build our own tool ?



I will do what I must



Breaking down the problem

- Services are easy to deploy since they are stateless

- For absolute isolation, state needs to be isolated

- Make it easier to deploy stateful dependencies like

- PostgreSQL

- Redis

- Object storage service

- Pub/Sub Queues



Guiding principles

- Use CRDs to represent everything

- Leverage kubernetes' lifecycle management

- Make it generic to support a range of projects

- Iteratively add features incorporating user feedback



Episode II
Building the machine



Going with Go

- Robust and easy to ship

- Amazing ecosystem for kubernetes tooling

- Statically typed

- and a great community



Lets build some cool sh*t



Kubebuilder

- Framework for building Kubernetes APIs using CRDs

- Uses code-generation

- Natively works with Kubernetes source libraries 

- Uses a Reconcile loop to reciprocate Kubernetes' declarative 

philosophy



Environment CRD
Creates a namespace and gives the users admin access to it



Environment CRD



PostgreSQL CRD
Creates a PostgreSQL database in an existing PostgreSQL Server



PostgreSQL CRD



Redis CRD
Creates a Redis container in the namespace



Redis CRD



Kubebuilder: Testing

- Great testing experience

- Launches the control plane to simulate kubernetes

- Uses Ginkgo framework

- You write Behaviour Driven Tests



Kubebuilder: Testing



Kubebuilder: Testing



Deploying a complete application

- Let's deploy the logistics service

- Assume we have to fix a bug

- Then need to test the entire flow on the mobile app



Deploying a complete application



Deploying a complete application: Behind the scenes

- Environment CRD creates a new namespace

- PostgreSQL database is created in the dev-postgresql server

- Redis StatefulSet is created

- Logistic API and Worker applications are deployed



Deploying a complete application: Your own paradise



Deploying a complete application: Workflow

- Deploy your code in a prod-like environment

- You get an endpoint like logistics-fix-bug.dev.example.com

- Use this URL in the debug build of the mobile app

- Push to production once the changes are working



But, there was a problem …
Not everyone was using it



Episode III
The Adoption Menace



How was the Developer Experience ?

- Devs used a shell script to apply the manifests

- Script was a bit flaky

- No feedback for when something went wrong

- Difficult to update since user's ran it from their local



Harsh truth about software

Whatever you build in this life, 
it's not legendary

unless your customers use it



Back to the drawing board

- Did user research to find out the real pain points 

- Figured out what they expected from the tool

- Surveyed them to get all the common use cases



Taking a step back

We built an amazing engine, but 
people do not buy engines

They buy cars



Hello CLI

- Create a CLI tool for the devs 

- Descriptive help section for commands and subcommands

- Encapsulate all the common use cases



Going with Go

- Viper is an excellent library for CLI applications 

- Single static binary, compile anywhere, run everywhere

- Easy to distribute and update

go install github.com/…/…



Dawn of a new era



Dawn of a new era



Devs loved the new changes



More than 80% of the features shipped that 
quarter were built using Jango Fett

… and the balance was restored



Takeaways

- Its okay to build in-house tools

- Go is great for extending upon Kubernetes

- Gather early feedback and iterate

- Customer obsession is key



The End

yashmehrotra.com

@yashm95


