
Supercharging
Kubernetes

Writing controllers in python

About Me: Yash Mehrotra

Backend, Infrastructure & Platform

Software Engineer @ Flanksource

Prev: BlinkIt, MindTickle

DevOps is a software engineering culture of
putting horrors into containers and then talking

about Kubernetes at conferences.

The Philosophy
of Kubernetes

Small detour: Kubernetes 101

- A container-orchestration system for automating application

deployment, scaling, and management.

- Works on declarative configuration principle

- You apply YAML or JSON manifests and the system ensures the

desired state is achieved

Kubernetes 101: Terminology

Namespace: A mechanism to provide virtual isolation for

resources

Pods: Group of one or more containers

Deployment: Maintain a set of replica pods

Service: Route requests to a group of pods via labels

Secret: Store key-value pairs which can be used by pods

Our imaginary story

- We work at TicketSellers

- They handle the sales for almost all concerts and events

- Existing infrastructure was not scalable

- Someone suggested to migrate to Kubernetes

Our imaginary story

- Thought kubernetes would solve all their problems

- Planned a very long and painful migration

- Finally everything was migrated to Kubernetes

- … the problems still existed

When you take a trash pile and deploy that
to Kubernetes, all you get is a containerized

orchestrated trash pile

New Platformer in the house

- Danny joins TicketSellers

- He is not impressed by the processes and decision-making

- Since Danny is in platform team, they ask him to solve the

scaling problems

The problems

- Previously, new VMs were spawned but they took time to

bootstrap and start up

- On kubernetes, they setup and start fast

- But when and how to spawn the extra ones ?

- Can't they do autoscaling on metrics like CPU, Memory or

Latency

The thundering herd problem

unsplash.com

The thundering herd problem

- System designed for a set amount of load

- Too many requests for certain entities

- Usually simpler to scale up on gradual load

- Not easy for generic auto-scaling to handle these scenarios

In the midst of chaos, there is
also opportunity

Brainstorming

- What if we try to forecast the load ?

- What if we spawn dedicated servers for those scenarios ?

- What if we launch a new database at runtime ?

A suggested solution

- Forecast the load based on social media followers

- Before the start of the selling window:

- Spawn new servers just to handle that load

- Create a new database for that event

- Update URL routing to direct those requests

More problems …
- This is like deploying a new application for every major event

- Will we write new manifests everytime ?

- How will we launch new databases and point apps to them ?

- Different routes for so many different events ? That's not easy

to manage !

- Who will clean all of it up after its done ?

Time for controllers

- Danny looks at the team and asks that since we are already on

kubernetes, why not just write a controller

- It will take care of the bootstrapping and cleanup

- Only have to write the glue code

- But … no one in the team understood what he meant

Who wishes to fight must first
count the cost

Forecasting load

1. We already have social media profiles of all the events

2. Based on our collected data and models, we can estimate the

load and how many servers (pods) to run for all of them

3. Before the window opens we deploy the new pods, the

database and update the rules

Forecasting load

Spawning new workload

Spawning new workload

Spawning new workload

Creating a new database

- Ingress object has a hostname and path directives binded to

services

- Each service has multiple pods behind it

- Traffic gets routed via an ingress controller (nginx, traefik etc.)

- They route it to the pods based on the request params and the

ingress object specification

How Kubernetes Ingress works ?

How Kubernetes Ingress works ?

Updating routing

Updating routing

Other benefits

- Each tenant scales individually

- Isolated Telemetry

- One tenant per event, no noisy neighbour problem

- Easy to cleanup

Demo Time

Takeaways

- Kubernetes can be extended in anyway you like

- Writing python controllers for kubernetes is a breeze

- Finding the correct problem to solve is very important

- There is always a better way

Thank you

yashmehrotra.com

@yashm95

